Для определения глистной инвазии, помимо соскоба и простого анализа кала, используют методы обогащения, основанные на концентрации яйцеглистов в растворах. Анализ кала методом обогащения в 10-15 раз лучше других методов справляется с поиском яиц гельминтов в фекалиях. Особенно это важно для ранней диагностики, потому что на начальной стадии гельминтоз лечить значительно легче. В профилактических целях сдавать кал методом обогащения рекомендуется всем, кто находится в группе риска.

Что представляет собой метод?

Виды анализа и методика проведения

Метод обогащения Калантарян

Другие методы

Метод Бермана по обогащению кала при сдаче анализа на гельминты

Помогает выявить в кале личинки угрицы. Для эффективной диагностики лучше использовать еще теплый кал. В исследовании используется металлическая сетка, с мелкими делениями, помещенная в установленную на подставке стеклянную воронку. На дне воронки размещается резиновая трубочка с зажимом. В сетку помещают 5 грамм испражнений, поднимают и в воронку заливают теплую воду, пока низ сетки не погрузится в воду. Яйца гельминтов из-за термоактивности, сползаются к теплой воде и скапливаются на дне воронки. Спустя 4 часа, выпускают жидкость и помещают в центрифугу на 3 минуты. Оставшийся осадок подлежит микроскопическому изучению.

Метод обогащения по Красильникову

Для исследования применяют 1% раствор порошка для стирки «Лотос», в котором растворены каловые массы. При размешивании должна образоваться суспензия. 30 минут суспензия отстаивается, а затем помещается в центрифугу на 5 минут. В центрифуге яйца гельминтов очищаются от кала и выпадают в осадок, который исследуется под микроскопом.

Подготовка

  • За 2 дня до исследования не проводить очистительные клизмы, колоноскопию либо рентген желудка.
  • Накануне не употреблять жирную, копченую и жареную пищу.
  • В течение 3-х дней перед исследованием, при отсутствии противопоказаний, пропить желчегонное средство.
  • Вечером перед анализом не употреблять продукты, изменяющие цвет фекалий.
  • По возможности не принимать антибиотики, препараты железа и сорбенты.

Правила сбора биоматериала на анализ:

  • Перед сбором провести тщательное мытье внешних половых органов.
  • Заранее помочиться.
  • Сбор каловых масс осуществлять в специальный контейнер.
  • Пробы кала взять из 5-ти разных мест, в количестве 3-5 мл.
  • Следить, чтобы в анализ не попала урина и вода.
  • Образец для исследования должен попасть на диагностику в течение дня сбора.

При виде товарных ценных минералов справедливо возникает вопрос о том, каким образом из первичной руды или ископаемого может получиться столь привлекательное ювелирное изделие. Особенно с учетом того, что переработка породы как таковая представляет собой если не один из финальных, то как минимум предшествующий заключительному этапу процесс облагораживания. Ответом же на вопрос будет обогащение в ходе которого происходит базовая обработка породы, предусматривающая отделение ценного минерала от пустых сред.

Общая технология обогащения

Переработка ценных ископаемых осуществляется на специальных предприятиях по обогащению. Процесс предусматривает выполнение нескольких операций, среди которых подготовка, непосредственное расщепление и разделение породы с примесями. В ходе обогащения получают разные минералы, в том числе графит, асбест, вольфрам, рудные материалы и т. д. Не обязательно это должны быть ценные породы - есть немало фабрик, выполняющих переработку сырья, которое в дальнейшем используется в строительстве. Так или иначе, основы обогащения полезных ископаемых базируются на анализе свойств минералов, которые обуславливают и принципы разделения. К слову, необходимость отсечения разных структур возникает не только с целью получения одного чистого минерала. Распространена практика, когда из одной структуры выводится несколько ценных пород.

Дробление породы

На этом этапе производится измельчение материала на отдельные частицы. В процессе дробления задействуются механические силы, с помощью которых преодолеваются внутренние механизмы сцепления.

В результате порода делится на мелкие твердые частицы, носящие однородный характер структуры. При этом стоит различать непосредственное дробление и технику измельчения. В первом случае минеральное сырье подвергается менее глубокому разделению структуры, в ходе которого формируются частицы фракцией более 5 мм. В свою очередь измельчение обеспечивает образование элементов диаметром менее 5 мм, хотя и этот показатель зависит от того, с какой породой приходится иметь дело. В обоих случаях ставится задача максимального расщепления зерен полезного вещества так, чтобы освобождался чистый компонент без микста, то есть пустой породы, примесей и т. д.

Процесс грохочения

После завершения процесса дробления заготовленное сырье подвергается другому технологическому воздействию, которое может представлять собой и просеивание, и выветривание. Грохочение в сущности является способом классификации полученных зерен по характеристике крупности. Традиционный способ реализации данного этапа предусматривает использование решета и сита, обеспеченных возможностью калибрования ячеек. В процессе грохочения отделяются надрешетчатые и подрешетчатые частицы. В некотором роде обогащение полезных ископаемых начинается уже на этой стадии, поскольку часть примесей и миксты отделяются. Мелкая фракция размером менее 1 мм отсеивается и с помощью воздушной среды - выветриванием. Масса, напоминающая мелкофракционный песок, поднимается искусственными воздушными потоками, после чего оседает.

В дальнейшем частицы, которые оседают медленнее, отделяются от совсем маленьких пылевых элементов, задерживающихся в воздухе. Для дальнейшего сбора производных такого грохочения используют воду.

Обогатительные процессы

Процесс обогащения ставит целью выделение из исходного сырья частиц полезного ископаемого. В ходе выполнения таких процедур выделяется несколько групп элементов - полезный концентрат, отвальные хвосты и другие продукты. Принцип разделения этих частиц основывается на различиях между свойствами полезных минералов и пустой породы. Такими свойствами могут выступать следующие: плотность, смачиваемость, магнитная восприимчивость, типоразмер, электропроводность, форма и т. д. Так, процессы обогащения, использующие разницу в плотности, задействуют гравитационные методы разделения. Такой подход используется при рудного и нерудного сырья. Весьма распространено и обогащение на основе характеристик смачиваемости компонентов. В данном случае применяется флотационный метод, особенностью которого является возможность разделения тонких зерен.

Также используется магнитное обогащение полезных ископаемых, которое позволяет выделять железистые примеси из тальковых и графитовых сред, а также очищать вольфрамовые, титановые, железные и другие руды. Базируется эта техника на разнице в воздействии магнитного поля на частицы ископаемых. В качестве оборудования задействуются специальные сепараторы, которые также используют для восстановления магнетитовых суспензий.

Заключительные этапы обогащения

К основным процессам этого этапа стоит отнести обезвоживание, сгущение пульпы и сушку полученных частиц. Подбор оборудования для обезвоживания осуществляется на основе химико-физических характеристик минерала. Как правило, данная процедура выполняется в несколько сеансов. При этом необходимость в ее выполнении возникает не всегда. Например, если в процессе обогащения использовалась электрическая сепарация, то обезвоживание не требуется. Помимо подготовки продукта обогащения к дальнейшим процессам переработки, должна быть предусмотрена и соответствующая инфраструктура для обращения с частицами минерала. В частности, на фабрике организуется соответствующее производственное обслуживание. Вводятся внутрицеховые транспортные средства, организуется снабжение водой, теплом и электроэнергией.

Оборудование для обогащения

На этапах измельчения и дробления задействуются специальные установки. Это механические агрегаты, которые с помощью различных приводных сил оказывают разрушающее воздействие на породу. Далее в процессе грохочения используют решето и сито, в которых предусматривается возможность калибрования отверстий. Также для просеивания применяют более сложные машины, которые называются грохотами. Непосредственно обогащение выполняют электрические, гравитационные и магнитные сепараторы, которые используются в соответствии с конкретным принципом разделения структуры. После этого для обезвоживания используют технологии дренирования, в реализации которых могут применяться те же грохоты, элеваторы, центрифуги и аппараты для фильтрации. Заключительный этап, как правило, предполагает использование средств термической обработки и сушки.

Отходы процесса обогащения

В результате процесса обогащения образуется несколько категорий продуктов, которые можно разделить на два вида - полезный концентрат и отходы. Причем ценное вещество вовсе не обязательно должно представлять одну и ту же породу. Также нельзя сказать, что отходы представляют собой ненужный материал. В таких продуктах может содержаться ценный концентрат, но в минимальных объемах. При этом дальнейшее обогащение полезных ископаемых, которые находятся в структуре отходов, зачастую не оправдывает себя технологически и финансово, поэтому вторичные процессы такой переработки редко выполняются.

Оптимальное обогащение

В зависимости от условий проведения обогащения, характеристик исходного материала и самого метода может различаться качество конечного продукта. Чем выше содержание в нем ценного компонента и меньше примесей, тем лучше. Идеальное обогащение руды, к примеру, предусматривает полное отсутствие отходов в продукте. Это значит, что в процессе обогащения смеси, полученной дроблением и грохочением, из общей массы полностью были исключены частицы сора от пустых пород. Однако достичь такого эффекта удается далеко не всегда.

Частичное обогащение полезных ископаемых

Под частичным обогащением понимается разделение класса крупности ископаемого или же отсечение легко выделяемой части примесей из продукта. То есть данная процедура не ставит целью полное очищение продукта от примесей и отходов, а лишь повышает ценность исходного материала путем увеличения концентрации полезных частиц. Такая обработка минерального сырья может использоваться, к примеру, в целях понижения зольности угля. В процессе обогащения выделяется крупный класс элементов при дальнейшем смешивании концентрата необогащенного отсева с мелкой фракцией.

Проблема потерь ценной породы при обогащении

Как ненужные примеси остаются в массе полезного концентрата, так и ценная порода может выводиться вместе с отходами. Для учета таких потерь используются специальные средства, позволяющие рассчитать допустимый уровень оных для каждого из технологических процессов. То есть для всех методов отделения разрабатываются индивидуальные нормы допустимых потерь. Допустимый процент учитывается в балансе обрабатываемых продуктов с целью покрытия расхождений в расчете коэффициента влаги и механических потерь. Особенно такой учет важен, если планируется обогащение руды, в процессе которого используется глубокое дробление. Соответственно, повышается и риск потерь ценного концентрата. И все же в большинстве случаев утрата полезной породы происходит из-за нарушений в технологическом процессе.

Заключение

За последнее время технологии обогащения ценных пород сделали заметный шаг в своем развитии. Совершенствуются и отдельные процессы переработки, и общие схемы реализации отделения. Одним из перспективных направлений дальнейшего продвижения является использование комбинированных схем обработки, которые повышают качественные характеристики концентратов. В частности, комбинированию подвергаются магнитные сепараторы, в результате чего оптимизируется процесс обогащения. К новым методикам этого типа можно отнести магнитогидродинамическую и магнитогидростатическую сепарацию. При этом отмечается и общая тенденция ухудшения рудных пород, что не может не сказываться на качестве получаемого продукта. Бороться с повышением уровня примесей можно активным применением частичного обогащения, но в общем итоге увеличение сеансов переработки делает технологию неэффективной.

Разрушение полезного ископаемого начинается в процессе его добычи. В зависимости от условий образования и последующих явлений метаморфизма полезные ископаемые обладают различ­ными свойствами. При применении тех или иных способов выем­ки и транспорта полезное ископаемое доставляется на обогати­тельную фабрику в виде смеси зерен, имеющих различие по крупности, крепости, твердости и упругости.

Для ряда полезных ископаемых различие в физико-механических свойствах (модули Юнга и Пуассона, прочность) разделяемых минералов приводят к тому, что в процессах дробления и измельчения частицы различных минералов существенно отличаются по крупности и форме. Некоторые авторы называют это обогащением по крепости минералов. В зависимости от крепости полезного ископаемого и вмещаю­щих пород в процессе добычи и при других операциях в шахте ис­ходный материал будет состоять из зерен той или иной крупности, при разделении которых на классы могут быть получены про­дукты с различным содержанием, как полезного компонента, так и загрязняющих примесей. Например, при измельчении магнетитовых кварцитов более прочный кварц в измельченном продукте оказывается в более крупных классах, чем магнетит (избирательное дробление и измельчение).

Разделение по крупности применяется, если имеется различие в качестве отдельных классов исходного материала. Здесь может потребоваться применение центробежных аппаратов как сухого (при обеспыливании), так и мокрого типа (гидроциклоны, центри­фуги). Процесс может быть как самостоятельным (на дисковых сепараторах), так и сопутствующим (например, при грохочении, пневматиче­ской, и мокрой классификации, в жалюзийных аппаратах, центробеж­ных обеспыливателях, в гидроциклонах и т. п.).

Обогащение данным способом с соответствующей подготов­кой производится, когда извлекаемые продукты необходимо по­лучить обязательно в крупном виде, например, обогащение драго­ценных камней (алмазов), либо в виде тонкого материала, на­пример, обогащение глин высокой дисперсности.

Как уже указывалось, обогащение некоторых полезных иско­паемых по крепости или твердости осуществляется путем дробле­ния при помощи удара, раздавливания или истирания, ниже в специальном разделе рассмотрены и более селективные методы раскрытия минералов.

В результате упомянутых видов дробления обогащаются рядо­вые угли, имеющие в своем составе более твердую породу, а также россыпи, содержащие черные алмазы, истирающиеся во много раз труднее, чем находящийся в этой россыпи гравий, имеющий оди­наковый с алмазами удельный вес.

m , а при перемещении - их вес Q = mg.



При добыче и переработке некоторых полезных ископаемых на­блюдают также и различия в форме кусков его компонентов (угли, слан­цы, слюда и асбестосодержащие руды, для которых различие в форме кусков компонентов является следствием их физических свойств). Сепарация частиц по форме приводит к концентра­ции того или иного компонента в продуктах разделения. Разделение составных частей, входящих в, смесь, отличающих­ся по форме (например, отделение пластинчатой породы, сопро­вождающей антрацит, или иглообразных волокон асбеста в асбе­стовой руде) может происходить и попутно на аппаратах, осуще­ствляющих другие операции (классификацию, обезвоживание и др.).

Общим звеном, связывающим эти различные процессы, является рабочая поверхность сепараторов или классификаторов. Последними являются грохоты с различной просеивающими поверхностями: для сепарации по крупности они должны иметь заданный размер ячеек, а для сепарации по форме важны не только размеры, но и форма отверстий в соответствии с кусков особенностями разделяемых минералов.

Обогащение по крупности. Возможность такого обогащения обусловлена физико-механическим свойствами разделяемых минералов. Так, например, при добыче угля, если порода крепкая, то более крупные классы исходного материала будут более высокозоль­ными (табл. 4).



Распределение по классам P 2 O 5 в фосфоритовой руде приве­дено в табл. 8.5.

Выход классов исходного продукта различной крупности и их качество определяют при помощи ситового и технического анали­зов. Обогатимость и возможные результаты обогащения можно определить обычным способом: для этого составляют таблицы и строят кривые обогатимости.

Записывать классы в таблицах для построения кривых обога­тимости надо в порядке возрастания содержания золы или P 2 O 5 .

Различие по крупности может быть получено в результате из­бирательного выветривания исходного материала.

В некоторых случаях этот процесс может иметь самостоятель­ное значение. Например, сортировка алмазной руды после ее вы­ветривания позволяет получить первичный концентрат алмазов.

Такой процесс применим и при извлечении других драгоцен­ных камней.

Следует отметить, что иные виды предварительной обработки исходного материала также могут привести к резкому различию качества минеральных составляющих смеси в зависимости от их крупности. К ним относятся: нагревание, охлаждение, эластичное дробление, ковка и пр.

При обогащении по крупности, поскольку процесс связан с разделением зерен различного размера, имеющих различное содержание какого-либо полезного минерала, очевидно необходи­мо учитывать массу зерен m , а при перемещении - их вес Q = mg.

В том случае, когда обогащение по крупности осуществляется при помощи избирательного грохочения, повышение веса зерен при определенном их размере представляет собой благоприятный фактор. В этом случае возможность прохождения зерна через от­верстие решета определяется соотношением размеров зерен и от­верстий.

Для обогащения по крупности может быть применен горизон­тальный дисковый сепаратор, схема устройства и действия которо­го показана на рис. 2.4.1.

В процессе сепарации более крупные зерна, имеющие боль­шую центробежную силу, от­брасываются на большее рас­стояние и попадают в концент­рический приемник II . Мелкие зерна собираются после схода их с диска D в приемник I . Регулировка аппарата и уп­равление им производятся глав­ным образом за счет изменения числа оборотов диска, что при­водит к изменению центробеж­ной силы и скорости схода зер­на с поверхности диска, а также за счет изменения количества движения исходного материала, по­даваемого на аппарат.

В отдельных случаях наблюдают проявление различий в форме частиц, обусловленное особенностями работы обогати­тельных машин, например дробилок. Так, при дроблении гор­ных пород на щебень для строительства в продуктах дробления появляются частицы «лещадной» (пластинчатой) формы, которые при использовании щебня в качестве заполнителя для бе­тона снижают его прочность. Уменьшение содержания «лещадных» частиц в готовой продукции может рассматриваться как. Рис. 2.5.1 повышение качества щебня.

Соотношение линейных размеров (доли ед.) частиц различ­ной формы (по В. Г. Деркачу и П. А. Копычеву) приведено ниже.

Длина Ширина Толщина

Форма частиц:

пластинчатая... 1 1(0,75) 0,5
продолговатая... 1 0,5 0,5
угловатая.... 1 1 0,5
округлая..... 1 1 1

Для разделения частиц с использованием различий в форме компонентов могут использоваться следующие способы:

Грохочение на специально оформленной просеивающей по­верхности;

Обогащение с использованием различий в коэффициентах трения частиц различной формы;

Разделение по скорости движения частиц в среде, обуслов­ленной различиями в форме частиц;

Разделение по площади контакта частицы с рабочей поверх­ностью аппарата;

Комбинированные способы разделения.

Выделение частиц пластинчатой или продолговатой формы путем грохочения улучшается при переходе от круглых к квад­ратным, от квадратных к прямоугольным, от прямоугольных к щелевидным отверстиям. Повышение качества фракционирован­
ного щебня за счет выделения частиц «лещадной» формы дости­гают, применяя резинострунные просеивающие поверхности, т. е. с использованием перехода от квадратных к прямоугольным от­верстиям. .

Схемы сепараторов для обогащения по форме представлены
на рис. 12.

Для выделения слюды, имеющей ярко выраженную пластин­чатую форму, выполнение только щелевидной просеивающей по­верхности недостаточно, так как для прохождения пластин слю­ды через щель необходима их ориентация перпендикулярно или наклонно к просеивающей поверхности. Такая ориентация до­стигается с помощью крышевидного грохота (см. рис. 2.5.2,а, б], образованного из уголков 1. При этом максимальная толщин» hmax пластинки слюды 2, которая проходит через щель меньше размера щели d c . При установке вертикальных перегородок 3 толщина пластинок слюды, проходящих через щели грохота d cr будет увеличена.

Таким образом, толщина пластинок слюды h, проходящих через щель, будет определяться углом наклона α полки уголка 1 или же высотой вертикальной перегородки 3: h = d c sinα.

Рис. 2.5.2. Схемы сепараторов для обогащения по форме:

а - крышевидный грохот; б - крышевидный грохот с вертикальными перегородками; в - барабанный грохот с удержанием частиц плоской формы за счет разрежения; г - плоскостной сепаратор для обогащения по форме и парусности; д - полочный сепаратор с трамплином; е - ленточный сепаратор-конвейер; ж - центробежный сепаратор».

При α = 0 через сито будут проходить частицы округлой и продолговатой формы. При увеличении угла наклона а толщи­на выделяемых частиц будет расти и npи α = 90° достигнет h= d c .

Процесс обогащения по форме с использованием профилиро­ванной поверхности реализован в грохоте СМ-13, применяемом в качестве основного обогатительного аппарата для получения слюды в забое (забойного сырца). Схемы переработки при этом зависят от запасов, содержания сростков в руде, крупности кус­ков (1; 0,6; 0,3 м), площади кристаллов, производительности добычных агрегатов. По содержанию сростков выделяют руды: до 5%- бедную сростками, 5-20% - среднюю, больше 20% - богатую сростками. В зависимости от приведенных факторов выделяют простые и сложные схемы переработки

Простые технологические схемы дробления и обогащения по форме применяют при объёмах переработки от 2 до 5 м 3 /ч. При большей производительности и более богатой по сросткам руде применяют сложные схемы получения забойного сырца с использованием операций обогащения по форме и ручной сортировки по внешним признакам. Для сохра­нения качества слюды переработку ее ведут с помощью пере­движных слюдовыборочных установок (СВУ-1, СВУ-2, УС-1), позволяющих извлечь до 90% слюды при засоренности концен­трата в пределах 6-20% на установках СВУ-1, СВУ-2 и 20-70% при переработке по простым схемам.

Имеются способы, использующие несколько свойств, вытека­ющих из различий в форме разделяемых частиц. Так, на рис. 2.5.2,в представлен барабанный грохот с удержанием частиц, плоской формы за счет разрежения, на валу 3 которого закреплены чашеобразная 2 и коническая 4 просеивающие поверхно­сти. Внутри барабанного грохота смонтированы устройства вво­да питания 6 и вывода концентрата 7. Коническая просеиваю­щая поверхность 4 охвачена кожухом 1 с уплотнителями 8, из полости которого откачивают воздух. Отсев с чашеобразной проcеивающей поверхности собирают на поддоне 5.

Исходный материал подают с помощью питающего желоба 6 на чашеобразную просеивающую поверхность 2, на которую в подрешетный продукт выделяют тонкозернистый материал и распределяют монослоем частицы округлой и плоской формы. При вращении грохота материал из чашеобразной части 2 по­ступает на коническую 4, где выделяют в надрешетный продукт округлые частицы. Частицы плоской формы перекрывают зна­чительную часть конической просеивающей поверхности и под действием отсасываемого из-под кожуха воздуха прижимают­ся к конической поверхности 4 грохота. Отрыв частиц плоской формы от поверхности барабана осуществляют на выходе зоны разрежения, слюдяной концентрат собирается и выводится из барабанного грохота лотком.

Барабанный грохот можно использовать для выделения слюды из отбитой горной массы крупностью –300+0 мм, а продукт округлой формы после дробления может снова подаваться на обогащение в грохот.

Плоскостной сепаратор для обогащения по форме и парусности (рис. 2.5.2,г) снабжен разгонной площадкой 1, разгрузочной щелью, отражательным выступом. Особенностью сепаратора является наличие у него перфорированной площадки 2 возле отражательного выступа 3, которая соединена с разгрузочной щелью канала 5, в котором установлен вентилятор 6. Подача воздуха через отверстия в площадке позволяет удары частиц слюдык об отражательный выступ, а забор воздуха из щели 4 для герметизации разгрузочного устройства 7 приводит к селективному увлечению в эту щель частиц с повышенной парусностью, т.е слюды. Округлые частицы ударяются о выступ 3 и проходят над щелью 4 в хвостовой продукт.

Различие в коэффициентах трения плоских и округлых частиц и их парусности используется в полочном сепараторе (рис. 2.5.2,д), предназначен-ном для обогащения смеси слюда-гранит-кварц крупностью менее 5 мм. Он состоит из наклонно установленной полки 1, заканчивающейся трамплином 2, параметры которого (угол поворота, длину) можно регулировать, и приемников продуктов разделения с регулировочным шибером. Приемник для слюды соединен со всасывающим патрубком вентилятора. При подаче материала на полку 1 сепаратора округлые частицы на подходе к трамплину 2 достигают более высоких скоростей, чем плоские частицы слю­ды, вследствие значительных различий в коэффициентах трения качения граната и скольжения слюды. На трамплине 2 скоро­сти движения частиц гасятся селективно, и различия в скоро­стях движения частиц граната и слюды возрастают. Из-за раз­личий в траекториях движения округлых и плоских частиц и различий в их парусности частицы слюды отклоняются в бункер слюдяного концентрата и осаждаются в нем.

Применение полочного сепаратора позволило получить слю­дяные концентраты из слюдосодержащих сланцев Кулетского месторождения (рис. 2.5.2,д). При переработке машинных классов

1,35 + 0,7; -0,7 + 0,4; -0,4 + 0,25; -0,25+0,1 мм были получе­ны концентраты с содержанием слюды соответственно 95; 98,85; 96,5; 93,2% и извлечением 8,2; 35,2; 19,3 и 24%.

На ленточном сепараторе-конвейере (см. рис. 2.5.2,е) частицы плоской формы движутся по более пологой траектории и про­летают большее расстояние. Траектория частиц определяется также парусностью частиц. Из-за различий в форме частиц на­блюдаются резкое изменение траектории их (кувыркание) и, как следствие, низкие показатели.

В центробежном сепараторе (см. рис. 2.5.2,с) предусмотрено устройство для повышения стабильности траекторий движения плоских частиц за счет их закрутки относительно вертикальной оси. Сепаратор содержит диск 1, кольцо 2, вращающиеся со ско­ростями 01 и 02, и кольцевые приемники продуктов разделения. Направления вращения диска и кольца совпадают, однако ско­рость вращения кольца выше и вследствие этого плоская части­ца при переходе с диска на кольцо закручивается вокруг верти­кальной оси и движется по более стабильной пологой траекто­рии.

2 Грохочением называют процесс разделения кусковых и зернистых материалов на продукты различной крупности, называемые классами, с помощью просеивающих поверхностей с калиброванными отверстиями (колосниковые решетки, листовые и проволочные решета).

В результате грохочения исходный материал разделяется на надрешетный (верхний) продукт, зерна (куски) которого больше размера отверстий просеивающей поверхности, и подрешетный (нижний продукт), зерна (куски) которого меньше размера отверстий просеивающей поверхности.

Дробление и измельчение – процесс разрушения полезных ископаемых под действием внешних сил до заданной крупности, требуемого гранулометрического состава или необходимой степени раскрытия материалов. При дроблении и измельчении нельзя допускать переизмельчения материалов, так как это ухудшает процесс обогащения полезного ископаемого.

Классификация – процесс разделения смеси минеральных зерен на классы различной крупности по скоростям их осаждения в водной или воздушной средах. Классификация осуществляется в специальных аппаратах, называемых классификаторами, если разделение происходит в водной среде (гидроклассификация), и воздушными сепараторами, если разделение происходит в воздушной среде.

Гравитационными процессами обогащения называют процессы обогащения, в которых разделение минеральных частиц, отличающихся плотностью, размером или формой, обусловлено различием в характере и скорости их движения в среде под действием силы тяжести и сил сопротивления.

К гравитационным процессам относятся отсадка, обогащение в тяжелых средах, концентрация на столах, обогащение в шлюзах, желобах, струйных концентраторах, конусных, винтовых и противоточных сепараторах, пневматическое обогащение.

Флотационные методы обогащения – процесс разделения тонкоизмельченных полезных ископаемых, осуществляемый в водной среде и основанный на различии их способности, естественной или искусственно создаваемой, смачиваться водой, что определяет избирательное прилипание частиц минералов к поверхности раздела двух фаз. Большую роль при флотации играют флотационные реагенты – вещества, позволяющие процессу идти без особых осложнений и ускоряющие сам процесс флотации, а так же выход концентрата.

Магнитные методы обогащения полезных ископаемых основаны на различии магнитных свойств разделяемых минералов. Разделение по магнитным свойствам осуществляется в магнитных полях.

При магнитном обогащении используются только неоднородные магнитные поля. Такие поля создаются соответствующей формой и расположением полюсов магнитной системы сепаратора. Таким образом магнитное обогащение осуществляется в специальных магнитных сепараторах.

Электрическим обогащением называется процесс разделения минералов в электрическом поле, основанный на различии их электрических свойств. Этими свойствами являются электропроводность, диэлектрическая проницаемость, трибоэлектрический эффект.

3. Ручная рудоразработка и породовыборка как способ обогащения основаны на использовании различия во внешних признаках разделяемых минералов – цвете, блеске, форме зерен. Из общей массы полезного ископаемого отбирают обычно тот материал, которого содержится меньше. В том случае, когда из полезного ископаемого отбирается ценный компонент, операция называется рудоразработкой, когда пустая порода – породовыработкой.

Декрипитация основана на способности отдельных минералов растрескиваться (разрушаться) при их нагревании и последующем быстром охлаждении.

Обогащение по трению, форме и упругости основано на использовании различий в скоростях движения разделяемых частиц по плоскости под действием сил тяжести. Основным параметром движения частиц по наклонной плоскости, является коэффициент трения, зависящий в основном от характера поверхности самих частиц и их формы.

Адиометрическая сортировка , основанная на различии радиоактивных свойств минералов или силе их излучения

Радиометрические методы обогащения основаны на различной способности минералов, испускать, отражать, или поглощать различные виды излучения.

К химическим методам обогащения относят процессы, связанные с химическими превращениями минералов (или только их поверхности) в другие химические соединения, в результате чего изменяются их свойства, или с переводом минералов из одного состояния в другое.

Химическое и бактериальное обогащение, основанное на спо­собности минералов, например сульфидов, окисляться и раство­ряться в сильно кислых растворах. При этом металлы переходят в раствор, из которого извлекаются различными химико-металлур­гическими методами. Присутствие в растворах некоторых типов бактерий, например тионовых, значительно интенсифицирует процесс растворения минералов.

В технологических схемах обогащения сложных комплексных руд часто используют одновременно два или три различных ме­тода обогащения, например: гравитационный и флотационный, гравитационный и магнитный и т. п. Применяются также комби­нированные методы обогащения в сочетании с гидрометаллурги­ческими.

Для успешного применения того или иного метода обогащения необходимо наличие у минералов достаточного различия тех свойств, которые используются в данном методе.

4. Процесс обогащения характеризуется следующими техноло­гическими показателями: содержанием металла в руде или продукте обогащения; выходом продукта; степенью сокращения и извлечением металла.

Содержание металла в руде или продукте обогащения - это отношение массы этого металла в руде или продукте обогащения к массе сухой руды или продукта, выраженное в процентах. Содержание металла принято обозначать греческими буквами α (в исходной руде), β (в концентрате) и θ (в хвостах). Содержание драгоценных металлов выражается обычно в единицах массы (г/т).

Выход продукта - отношение массы продукта, полученного -при обогащении, к массе переработанной исходной руды, выражен­ное в долях единицы или процентах. Выход концентрата (γ) показы­вает, какую долю от общего количества руды составляет концентрат.

Степень сокращения - величина, обозначающая во сколько раз выход полученного концентрата меньше количества перерабо­танной руды. Степень сокращения (К) выражает количество тонн; руды, которое нужно переработать, чтобы получить 1 т концентрата, и рассчитывается по формуле:

К= 100/ γ

Для руд цветных и редких металлов характерен малый выход концентрата и, следовательно, высокая степень сокращения. Выход концентрата определяется прямым взвешиванием или по данным химического анализа по формуле:

γ =(α - θ/β - θ)100,%.

Степень обогащения, или степень концентрации показывает, во сколько раз увеличилось содержание металла в кон­центрате по сравнению с содержанием металла в руде. При обогаще­нии бедных руд этот показатель может составлять 1000... 10000.

Извлечение металлаε - это отношение массы металла в кон­центрате к массе металла в исходной руде, выраженное в процентах

ε=γβ/α

Уравнение баланса металла

εα=γβ

связывает основные технологические показатели процесса и позволяет рассчитать степень извлечения металла в концентрат, которая, в свою очередь, показывает полноту перехода металла из руды в концентрат.

Выход продуктов обогащения можно определить по данным химических анализов продуктов. Если обозначить:- выход концентрата; - содержание металла в руде; - содержание металла в концентрате; - содержание металла в хвостах, а - извлечение металла в концентрат, то можно составить баланс металла по руде и продуктам обогащения, т. е. коли­чество металла в руде равно сумме его количеств в концентрате и хвостах

Здесь за 100 принят выход исходной руды в процентах. Отсюда выход концентрата

Извлечение металла в концентрат можно подсчитать по формуле

Если выход концентрата неизвестен, то

Например, при обогащении свинцовой руды, содержащей 2,5% свинца, получен концентрат с содержанием 55% свинца и хвосты, содержащие 0,25% свинца. Подставляя результаты химических анализов в приведенные выше формулы, получим:

выход концентрата

извлечение в концентрат

выход хвостов

степень обогащения:

Качественно-количественные показатели обогащения харак­теризуют техническое совершенство технологического процесса на фабрике.

Качество конечных продуктов обогащения должно соответство­вать требованиям, предъявляемым потребителями к их химическому составу. Требования к качеству концентратов называются кондициями и регламентируются ГОСТ, техническими условиями (ТУ) или временными нормами и разрабатываются с учетом технологии и экономики I переработки данного сырья и его свойств. Кондициями устанавливается минимально или максимально допустимое содержание различных со­ставных компонентов полезного ископаемого в конечных продуктах обогащения. Если качество продуктов соответствует кондициям, то эти продукты называются кондиционными.

Выводы:

Обогатительная фабрика является промежуточным звеном между рудником (шахтой) и металлургическим заводом. Руда различной крупности, поступающая с рудника, при переработке на обогатительной фабрике проходит различные процессы, которые по своему назначению можно разделить на подготовитель­ные, собственно обогатительные и вспомогательные.

Подготовительные процессы имеют целью под­готовить руду к обогащению. Подготовка включает прежде всего операции уменьшения размеров кусков руды - дробление и измельчение и связанную с ними классификацию руды на гро­хотах, в классификаторах и гидроциклонах. Конечная крупность измельчения определяется крупностью вкрапленности минералов, так как при измельчении не­обходимо максимально рас­крыть зерна ценных мине­ралов.

К собственно обо­гатительным про­цессам относятся про­цессы разделения руды и других продуктов по физи­ческим и физико-химическим свойствам минералов, входя­щих в их состав. К этим процессам относятся гравита­ционное обогащение, флота­ция, магнитная и электри­ческая сепарация и др.

Большинство процессов обогащения проводится в во­де и получаемые продукты содержат большое количе­ство ее. Поэтому возникает необходимость во вспомогательных процессах. К ним относится обезвоживание продуктов обогащения, включающее сгущение, фильтрование и сушку.

Кроме того, существуют так называемые специальные методы обогащения, к которым относятся:

рудоразработка, основанная на различии цвета и блеска отдель­ных минералов, их прозрачности или свечения;

адиометрическая сортировка, основанная на различии радиоактивных свойств минералов или силе их излучения;

обогащение по трению, основанное на различии коэффициен­тов трения минералов при движении их по плоскости;

химическое и бактериальное обогащение, основанное на спо­собности минералов, например, сульфидов, окисляться и раство­ряться в сильно кислых растворах.

Процесс обогащения характеризуется техноло­гическими показателями: содержанием металла в руде или продукте обогащения; выходом продукта; степенью сокращения и извлечением металла, что определяет основные характеристики процессов обогащения.

Контрольные вопросы:

1.
На какие разделы делят методы обогащения полезных ископаемых?

2.
Какие методы относятся к основным, а какие к вспомогательным методам обогащения.

3.
Какие методы обогащения Вам известны?

4.
Охарактеризуйте процессы грохочения, дробления, измельчения и классификации.

Специальные методы классифицируются на следующие виды: 1. Магнитное и электрическое обогащение; 2. Сортировка; 3.Обогащение с использованием эффектов взаимодействия кусков разделяемых компонентов с рабочей поверхностью сепаратора; 4.Обогащение на основе селективно направленного изменения размеров кусков компонентов полезного ископаемого; 5.Обогащение на основе разницы в поверхностных свойствах разделяемых минералов.

1)Магнитное обогащение (магнитная сепарация) основано на использовании различий в магнитных свойствах компонентов разделяемой мех. смеси с размером частиц до 100, иногда до 150 мм в неоднородном постоянном или переменном магн. поле. Процесс осуществляют в водной или воздушной среде в валковых, барабанных, роторных и иных магн. сепараторах. Магн. сепарацию широко применяют при обогащении железных, марганцевых, медно-никелевых руд и руд редких металлов.

Электрическое обогащение (электрическая сепарация) основано на различии в электрич. св-вах компонентов ископаемого сырья.

Барабанный электростатический сепаратор: 1-бункер для исходного материала; 2-заряженный барабан; 3-ци-линдрич. электрод; 4-устройство для очистки барабана; 5-7-приемники соотв. для непроводников, полупроводников и проводников. 2)СОРТИРОВКА ПОЛЕЗНЫХ ИСКОПАЕМЫХ. К основным способам сортировки относятся: 1.Ручная сортировка (породовыборка, рудоразборка, углесортировка). Ручная сортировка применяется когда не могут быть применены механическое или химическое обогащение; когда механические процессы не обеспечивают необходимого качества разделения, 2.Механизированная сортировка, включающая процессы с общим названием радиометрические методы обогащения.3)ОБОГАЩЕНИЕ С ИСПОЛЬЗОВАНИЕМ ЭФФЕКТОВ ВЗАИМОДЕЙСТВИЯ КУСКОВ РАЗДЕЛЯЕМЫХ КОМПОНЕНТОВ. 1.Обогащение по упругости; 2.Обогащение по трению; 3.Комбинированное обогащение по трению и упругости; 4.Обогащение по форме; 5.Термоадгезионный метод обогащения; 6.Обогащение на жировых поверхностях.4.Обогащение на основе селективно направленного изменения размеров кусков компонентов полезного ископаемого ; 1.Избирательное дробление-применимо для полезных ископаемых, имеющих крупные агрегаты ценного компонента, которые отличаются по прочности от вмещающих пород. 2.Избирательное измельчение- как и избирательное дробление, использует различия в прочности компонентов полезного ископаемого. 3.Промывка полезных ископаемых- используется при обогащении рассыпных месторождений редких и благородных металлов, руд черных металлов (железа, марганца), фосфоритов, каолинов, стройматериалов (песка, щебня), флюсов и т.д.

4.Оттирка полезных ископаемых-используют при переработке стекольных песков, горного хрусталя, полевых, хромитовых шпатов, хромитовых концентратов, искусственных минералов, а также при подготовке к флотации углей. 5.Декрипитационное разрушение-избирательное раскрытие, основанное на способности отдельных минералов разрушаться по плоскостям спайности при нагревании и последующем быстром охлаждении или только при нагревании. 6.Термохимическое разрушение- применяют для руд, породная часть которых представлена карбонатами, например, кальцитом, магнезитом, сидеритом, а ценный компонент при этом представлен термически устойчивыми минералами - пирохлором, фторапатитом и др. 7.Изменение размеров частиц с помощью термообработки- заключается в нагревании обрабатываемого продукта до температуры плавления серы, образования водной эмульсии и последующего ее охлаждения.

5)ОБОГАЩЕНИЕ НА ОСНОВЕ РАЗНИЦЫ В ПОВЕРХНОСТНЫХ СВОЙСТВАХ РАЗДЕЛЯЕМЫХ МИНЕРАЛОВ

Селективная коагуляция- объединение частиц дисперсной фазы в агрегаты вследствие сцепления (адгезии) частиц при их соударениях.

Селективная флокуляция-совокупность процессов выборочной агрегации тонкодисперсных частиц полезных ископаемых в микрофлокулы крупностью 100-300 мкм с помощью реагентов -флокулянтов различной природы.

Адгезионное обогащение- этот способ обогащения основан на избирательном адгезионном взаимодействии извлекаемого компонента сгидрофобной поверхностью в водной

Амальгамация - метод извлечения металлов из руд растворением в ртути. Амальгаму отделяют от пустой породы и ртуть отгоняют.